Organoids, organs-on-chips and other systems, and microbiota
نویسندگان
چکیده
The human gut microbiome is considered an organ in its entirety and has been the subject of extensive research due to its role in physiology, metabolism, digestion, and immune regulation. Disequilibria of the normal microbiome have been associated with the development of several gastrointestinal diseases, but the exact underlying interactions are not well understood. Conventional in vivo and in vitro modelling systems fail to faithfully recapitulate the complexity of the human host–gut microbiome, emphasising the requirement for novel systems that provide a platform to study human host–gut microbiome interactions with a more holistic representation of the human in vivo microenvironment. In this review, we outline the progression and applications of new and old modelling systems with particular focus on their ability to model and to study host–microbiome cross-talk.
منابع مشابه
Three-Dimensional Cell Cultures in Drug Discovery and Development
The past decades have witnessed significant efforts toward the development of three-dimensional (3D) cell cultures as systems that better mimic in vivo physiology. Today, 3D cell cultures are emerging, not only as a new tool in early drug discovery but also as potential therapeutics to treat disease. In this review, we assess leading 3D cell culture technologies and their impact on drug discove...
متن کاملPriming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system
Nanotechnology and bioengineering have converged over the past decades, by which the application of multi-functional nanoparticles (NPs) has been emerged in clinical and biomedical fields. The NPs primed to detect disease-specific biomarkers or to deliver biopharmaceutical compounds have beena validated in conventional in vitro culture models including two dimensional (2D) cell cultures or 3D o...
متن کاملUsing brain organoids to understand Zika virus-induced microcephaly.
Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induc...
متن کاملDifferential Modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of Host Peripheral Lipid Metabolism and Histone Acetylation in Mouse Gut Organoids
UNLABELLED The gut microbiota is essential for numerous aspects of human health. However, the underlying mechanisms of many host-microbiota interactions remain unclear. The aim of this study was to characterize effects of the microbiota on host epithelium using a novel ex vivo model based on mouse ileal organoids. We have explored the transcriptional response of organoids upon exposure to short...
متن کاملEngineering challenges in microphysiological systems
Modeling human physiology with the microphysiological systems In humans, tissues and organs are made of hierarchically assembled structures of mul tiple compositions to achieve biological func tions. The different tissues and organs are then organized in a specific order enabled by a circuitry of vascular network, further achieving physiological interactions. On the one hand, many of these co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017